DEVELOPMENT OF A SYSTEM-WIDE CONTROLLED SUBSTANCES DIVERSION RISK ASSESSMENT

Travis Carlson, PharmD, Mike Metz, RPh, Stacy Wucherer, RPh
Aurora St. Luke’s Medical Center, Milwaukee, WI

BACKGROUND
- Controlled substance abuse is a nationwide epidemic
- 10-15% of healthcare workers misuse alcohol or drugs at some point in their careers
- Ready access is a critical component of drug diversion
- Drug diversion can cause harm to the diverter, patients, and the organization
- Large geography with four distinct business units
 - 16 hospitals
 - 74 community pharmacies
 - 101 clinics
 - 2 home infusion pharmacies
- A Controlled Substances Diversion Prevention Program (CSDPP) committee was formed in December 2016

OBJECTIVES
- Complete a risk analysis for each business unit to assess for areas of risk using the adapted Institute for Healthcare Improvement (IHI) Failure Modes & Effects Analysis (FMEA) risk assessment tool
- Conduct a gap analysis for each site in the health system to compare current practices with best practice guidelines developed by the American Society of Health-System Pharmacists (ASHP)

METHODS
Part 1: FMEA
- Multi-disciplinary work teams were assembled to complete a business unit specific FMEA.
 - Map Workflows
 - Hospital
 - Clinic
 - Home Infusion
 - Brainstorm Risks
 - Pharmacy
 - Nursing
 - Internal Audit
 - Identify Controls
 - Current controls
 - Potential action plan
 - Adapted IHI risk assessment tool
 - Four categories
 - Scale 1 through 5

FMEA Risk Scoring Tool
- Severity: How likely is that harm will occur to a patient because of this?
- Volume: How large is the diversion?
- Likelihood: How likely is it that the diversion will occur?
- Detection: How likely is it that the future will be detected and we'll be able to identify the cause?

5 Extreme: Event causes a major safety or permanent injury
 - Very large: Greater than 100 doses
 - Certain: Very likely to occur
 - None: Highly unlikely that we'll detect this

4 High: Event causes a major safety or non-permanent injury
 - Large: 51-100 doses
 - High: Strong possibility that will occur
 - Slight: Low likelihood of detection and more difficult to identify the cause

3 Moderate: Event causes a minor to moderate injury
 - Moderate: 26-50 doses
 - Moderate: Maybe occasionally
 - Moderate: Moderate likelihood of detection and identification of cause

2 Low: Slight annoyance, event causes very minor safety or no injury
 - Small: 2-25 doses
 - Low: Rarely
 - High: Highly likely that we'll detect this and be able to trace back to the cause

1 Negligible: Event causes no injury, but has some other negative consequences
 - Negligible: 1 dose
 - Remote
 - Certain: Extremely likely that we'll detect this and can track the cause

Part 2: Gap Analysis
- A gap analysis will be conducted using a business unit specific survey which was developed using ASHP's CSDPP self-assessment guide.
- Survey responses will be compiled to show the current state of system-wide prevention control strategies.
- CSDPP committee workgroup will create policies, procedures, and additional controls to be implemented to close gaps.

RESULTS
Hospital: Highest risk workflow: “medication administration”
- Severity = 5
- Volume = 4
- Likelihood = 5
- Detection = 4

Community: Highest risk workflow: “handing medication to the patient”
- Severity = 3
- Volume = 3
- Likelihood = 3
- Detection = 4

NEXT STEPS
FMEA:
- Continue to meet with multi-disciplinary teams to complete FMEA
- Prioritize highest risks and present to CSDPP committee

Gap Analysis:
- Compile comprehensive contact lists for each business unit
- Collect feedback on survey questions
- Send self-assessment survey to system wide leadership and record responses
- Present business unit specific gaps to CSDPP committee

CHALLENGES
- Identifying dedicated leaders across a large health system
- No established business unit specific contact groups

REFERENCES